
A Throughput-Efficient Packet Classifier
with n Bloom Filters

Heeyeol Yu and Rabi Mahapatra

Texas A&M University
College Station, TX 77843

Email: {hyyu,rabi}@cs.tamu.edu

Abstract— Packet classification is a critical data path in a high-
speed router. Due to memory efficiency and fast lookup, Bloom
filters (BFs) have been widely used for packet classification in a
high-speed router. However, in a parallel packet classifier (PPC)
of n parallel BFs, using all n BFs for a lookup is not throughput
efficient in a high speed router. In this paper, we propose a
multi-tiered packet classifier (MPC) for high throughput with
the same memory size as a PPC. While a PPC of n BFs needs
Θ(n) BF access complexity for a lookup, our MPC is geared to
have the complexity which is probabilistically far less than Θ(n).
Furthermore, by preprocessing a group of lookups in one cycle,
each lookup is assigned to its associated BF at best effort, so
that a higher throughput in an MPC is obtained. In simulation
for flow identification with NLANR traces, we observed that, at
most, 2.0 times more throughput was recorded than a PPC .

I. Introduction

As the demand for high-speed and large-scale routers has
surged, a class of fast packet processing, such as packet
classification and IP lookup, have become the critical data
path functions for many emerging networking applications.
Those functions have enjoyed wide application in networking
devices to support firewall, access control list, and quality of
service in several network domains. They match a packet in
high speed against a prioritized set of rules, which are made
up of one or more fields for IP lookup or packet classification,
respectively. For example, for Cisco GSR 12416 router of a
160Gbps rate, a packet lookup with a rule table needs to take
about 2ns per packet in the worst case on the condition of a
minimum 40-byte packet.

There are currently three major techniques for fast packet
processing, Ternary Content Addressable Memory (TCAM),
trie-based, and hash-based schemes. Among them, hash-based
schemes have been favored due to power efficiency and
balanced memory access againt the others. As a hash-based
scheme, a Bloom filter (BF) has been widely documented
in literature on networking [1–6]. A BF is essentially a
generalized hash mechanism on a key set with k hash functions
for approximate membership testing. Dharmapurikar et al.
[3] introduced the first algorithm to employ BFs working
in parallel for IP lookup. Similar approaches using BFs for
fast lookup were applied to packet inspection application for
network security [4], for packet classification identifying flows
[5], and for network applications like content delivery [2].

Despite a BF’s wide usage due to memory efficiency, a

BF of an m-bit vector has a limitation of a false positive
(f -positive). Thus, to sustain a extremely low f -positive rate
and to resolve the f -positive are necessary in a high speed
packet classification. In addition to the issue from a single
BF, in a variety of applications that use a set of n BFs, a
key (or a packet) query to n BFs has been designed in an
ad-hoc manner such that they probe all n BFs. For instance,
in packet classification [5] for Juniper T640 with 160 router
ports, each of 160 BFs is assigned to a port for flows’ record,
and all BFs are to be probed to find the next output port
for an incoming flow. Probing all BFs for a packet lookup in
a cycle is not throughput efficient, because only one BF is
actually associated with the lookup and the rest BFs can do
other lookups in the cycle. Thus, to distribute lookup requests
to their corresponding BFs without probing the irrelevant BFs
for a lookup is throughput efficient in packet classification.

Our multi-tiered packet classifier (MPC) of n BFs provides
such a lookup distribution for a higher throughput, compared
to a parallel packet classifier (PPC) of n parallel BFs [3, 5–
7]. A PPC accesses n BFs for one lookup every cycle while
an MPC accesses n BFs for several lookups every cycle with
the same BFs’ memory amount as that in a PPC. To build 2-
tiered BFs, for an example of an MPC, the total PPC memory
is split for a pre-stage of small-sized BFs with one read port
and a post-stage of large-sized BFs with k-1 read ports. Then,
a small-sized BF is logically connected to two large-sized
BFs, so that a forest of binary trees is built. In this forest,
a lookup starts from parent BFs in the pre-stage to children
BFs in the post-stage. Due to no false negative in a BF, since
the lookup can proceed to two children BFs in a post-stage
only if the lookup in a parent BF return positive either true or
false, there is the possibility of not reaching the two large-sized
BFs irrelevant to the lookup, compared to a PPC. Thus, the
total number of the reached large-sized BFs for the lookup is
probabilistically far smaller than n-2 depending on the small-
sized BFs’ f -positives in the pre-stage. Thus, the rest idle
large-sized BFs in the post-stage can be utilized for other
lookups. By distributing a group of lookups to corresponding
BFs in a cycle at best, a higher throughput is achieved in an
MPC.

Generally, a good packet classifier has to satisfy three
criteria: 1) Throughput: a lookup must forward packets fast
enough to keep up with the rapidly increasing line-rate. 2)

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 1

Authorized licensed use limited to: National Cheng Kung University. Downloaded on September 18, 2009 at 08:23 from IEEE Xplore. Restrictions apply.

Memory: because memory size directly affects system cost,
a lookup speed, and power dissipation, the total required
memory should grow slowly with the number of rules. 3)
Power: to keep the cooling system complexity reasonable,
power dissipation for a lookup must scale well. Our MPCs
for packet classification satisfies these criteria better than a
PPC, and it is clear that an MPC is beneficial in any packet
processing [3, 6, 8, 9].

This paper has the following contributions:

• An MPC, is proposed in a multi-tiered configuration of
BFs with the same memory amount as a PPC.

• We show that putting multi-ports in small-sized BFs does
not increase the total area cost in fabricating memory
modules of small-sized BFs and large-sized BFs.

• Simulations for packet classification with NLANR traces
[10] are conducted to measure throughput against a PPC.

The related works using BFs for packet processing are
shown in Sec. II. In Sec. III, memory architecture for an
MPC as well as the two operations, insert and query, are
shown. Particularly in query two kinds of lookups, successful
and unsuccessful, are considered and probabilities of them
are calculated. In Sec. IV, with IP traces from [10], we
measure power with different number of BFs. Finally, Sec.
V summarizes benefits of MBFs and a future work.

II. RelatedWorks

Packet classification is a key technology for modern high-
speed routers. The packet classification goal is to identify a
flow characterized with a 5-tuple of source IP (SIP), destina-
tion IP (DIP), protocol, source port (SP), destination port (DP)
and to forward the flow to a corresponding output port. Several
types of packet classifiers like TCAM-based and SRAM-based
ones are suggested [8, 11–13]. As a hash-based approach, a
packet classifier in [5] uses BFs in a parallel configuration, so
that in a given packet lookup all BFs need to be checked to
find the packet-associated flow in each BF and the packet is
forwarded to a corresponding port where a BF returns ’yes’.
However, in a high-speed lookup to a BF, the number of
memory read ports in the BF is considerably large. Also, the
number of BFs to be probed is as large as the number of a
high-speed router’s ports. Unlike the above schemes of the
Θ(n) BF access complexity among n BFs, our MPC needs
probabilistically less complexity than Θ(n) for a lookup

Besides BF applications for packet processing, applications
of other domains have utilized the benefit of BFs, such as
dynamic BF for data management [6], wide-area web caching
[14], content delivery across overlay networks [2], IP traceback
[15], query routing in peer-to-peer networks [9]. However,
these applications simply process one lookup to n BFs in
parallel resulting in the Θ(n) lookup complexity.

III. A Multi-tiered Packet Classifier with n BFs

In this section, we present the mathematics about a BF and
an f -positive. We then introduce how to build an MPC and
insert and query operations in a high throughput MPC.

A. Bloom Filter Theory
A legacy BF for representing a set S of ni items (or keys) is

described by an m-bit array memory with each initially set to
0. A BF uses k independent hash functions h0, ..., hk-1 within
the range of [0:m-1]. For mathematical convenience, we make
a natural assumption that these hash functions map each key
in the universe to a random number uniform over the range.
For insertion of each key e j′∈S , the bits indexed by hk′ (e j′) are
set to 1 for 0≤k′≤k-1, 0≤ j′≤ni-1. To query that key e′ is in S , k
bits by k memory reads through hk′ (e′) should all be 1. If so,
a BF returns ’yes’ about a query of key e′. If not, then clearly
e′ is not a member of S . Even if a BF returns ’yes’, there may
be a probability of an f -positive that key y is falsely believed
to belong to set S due to the random gathering of k bits of
value 1 set by independent keys. As [1] claims, the f -positive
probability is bounded as follows:

f ≥ {1 − (1 − 1/m)kni }k ≈ (1 − p)k ≥ (1/2)m ln 2/ni . (1)

The optimal k, the number of hash functions, that minimizes
f is easily found k= ln 2(̇m/ni). After some algebraic manipu-
lation, it is clear that the requirement of f≤ε=2-w, where w is
called lookup precision, suggests

m ≥ ni log2(1/ε)/ ln 2 ≈ 1.44ni log2(1/ε) = 1.44niw. (2)

From Eq. (2), the following important lemma can be derived:

Lemma 1 (Linear Property) Linear property between m and n
exists in Eq. (2) because given f requires that variable ni is
linearly proportionate to variable m.

Also, in an optimal configuration, k becomes w according to
Eq. (2) and the derivation that k=m ln 2/ni=w, and to be a
scheme of an f -positive-free O(1) lookup processing 500M
packets a second for a 160Gbps router, k needs to be at least
29 (≈ log2 1/500M). Each hash function corresponds to one
random lookup in an m-bit memory, and a BF with k hash
functions needs the exact same k of memory read ports in an
m-bit memory. Thus, a BF is considered as a high computation
element due to the large value of k for the high-speed router,
so that using few number of BFs for a lookup is preferable.

B. Building a Multi-tiered Packet Classifier

1
1B 1

2B 1
3B

1 read

A
D

1 read

A
D

D : data port

: address port

2
1B 2

2B

���
���
���
���

k−1 k−1 k−1 k−1
reads readsreads reads

B 1
4

? == 1 ? == 1
hashes hashes hashes hashes

layer 1

layer 2

BF memory with D & A

hashhash
b b

buffer
packets

2TPC

A A A A
DD D D

A
D

A

Fig. 1. Memory architecture of a 2TPC in a forest and in pipeline. Bi
j means

the j-th BF at layer i. n=4. k=w due to an optimal k. Buffer size b=1.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 2

Authorized licensed use limited to: National Cheng Kung University. Downloaded on September 18, 2009 at 08:23 from IEEE Xplore. Restrictions apply.

In this section, we derive mathematical proof that an MPC
uses the same memory size as a PPC while the detailed
insertion and query are mentioned in Secs. III-C and III-D.
Fig. 1 shows a configuration example of an MPC, a 2-tiered
PC (2TPC) on top of 4 BFs, in place of a PPC configured in
a linear form. Given desired f -positive f=2-w, the total PPC
memory in bits with n BFs is n·m, where m is a BF’s memory
based on Eq. (2). However, with linear property between m
and ni and an additive operation on memory size mt, we can
reconfigure BFs in a (r+1)-tiered way, r>0, while the same
memory size, mM, for an MPC is used as follows:

n × m = n × {1.44 · ni · log2(1/ f)}
= n × {1.44 · ni · w} = n × {1.44 · ni · (w − r + r)}
= n · 1.44 · ni · (w − r) +

∑r
t=1{n · 1.44 · ni · 1}

=
∑n

i=1(1.44 · ni · (w-r))+
∑r

t=1

∑n/2t

i=1 (1.44 · (2tni) · 1) (3a)

= m1 +
∑r

t=1 mt+1 = mM ,

where mt is the total memory of BFs on layer t, r+1 is the
number of tiers, 2tni is the number of keys in Bt

i, and the
lookup precisions of a BF on layer 1 and t, w1 and wt, are w-r
and 1, respectively. Based on Eq. (2), the f -positives of BFs
on layer 1 and 2 in a 3TPC are expected to be 2-(w-2) and 2-1,
respectively, and the second term in Eq. (3a) is the sum of
small-sized BFs from layer 2 to layer r+1. Also, a BF from
layer 1 covers ni elements, and a BF from layer 2 covers 2ni

keys. Generally, Bj
i covers all keys from Bj-1

2i and Bj-1
2i+1, 1≤i≤n/2,

1< j≤r in an MPC.
Although the above derivation shows that an MPC has

the same memory size as a PPC, processing a lookup in
small-sized BFs of one read port does not provide a higher
throughput in large-sized BFs on a lower layer. For instance,
even if b in Fig. 1 is set to 2, a one-read-port BF on layer
2 cannot process 2 lookups in one cycle. Thus, the number
of read ports in the small-sized BF needs to be the same as
b. As suggested in [3], using mini-BFs with few read ports
is the solution without degrading lookup accuracy. However,
even if a BF is broken into several mini-BFs, the total number
of read ports in the mini-BFs is the same as that in a PPC.
Thus, breaking a BF into mini-BFs only gives the possibility
of fabricating BFs for packet processing, not the benefit of
high throughput. However, our MPC has two benefits of
few number of read ports and an area cost which can lead
to fabricate small-sized BFs of multi read ports for a high
throughput without area overhead.

Fig. 2 shows such two benefits, the smaller number of
fabricated read ports and the smaller area for a 2TPC. Fig.
2(a) shows the required numbers of read ports in fabricating
a different number of BFs for a PPC, a 2TPC, and a 3TPC,
respectively. In fabricating, a 2TPC and a 3TPC use 4 and
10% few number of read ports than a PPC in all cases. Fig.
2(b) shows 2TPC and PPC area costs in a different number of
w and ni, and we measured the area costs using 4 mini-BFs
for a BF in each case through CACTI [16].

Now, we show how to fabricate multi-ports in a small-
sized BF without hardware overhead. There is a noticeable gap
between meshes in Fig. 2(b), and the reason is that fabricating
multi-ports in a small-sized memory does not need area as

8 16 32 64

200

400

600

800

1000

of BFs, n (log scale)

T
ot

al
 #

 o
f

m
em

or
y

re
ad

 p
or

ts PPC
2TPC
3TPC

(a) The read port number

3
4

5

16

20

24
0

2

4
5

n
k
 (x104)w(=k)

A
re

a
(m

m
2)

(x
10

3)

PPC

2TPC

(b) The area cost (w2=1)

Fig. 2. (a) The total number of read ports in different number of BFs.
w3=w2=1, w1=13 for a 3TPC. w2=1, w1=14 for a 2TPC. f=2−15.
(b) 2TPC and PPC area costs with n=8 in .13µm process technology.

much as in a large-sized memory. Due to page limit, we did
not plot the area costs for 2 through 5 read ports in a small-
sized BF memory on layer 2. However, there is a small area
increase for the multi-port memory, compared to the area of
a PPC. Thus, it is clear that the buffer size b can amount to 5
at most. Also, utilizing dual reads on falling and rising edges
in a clock [17] can double memory read capacity for a lookup
throughput as a double data rate scheme does in DRAM and
AMD Athlon64. Thus, the buffer size becomes twice and the
maximum b is 10 without memory overhead in a MPC.

C. Insert in an MPC

Procedure insert
Input: Key e and index i for a BF on layer 1
Output: Encoded 2TPC about e
for layer j = 1 to s do1

for t = 0 to k j − 1 do // ht is t-th hash func.2

Bj

�i/2 j-1�[ht(e)]=1; // B is Mem. on SRAM for BF3
end4

end5

Insert operation of a key in a BF on layer 1 is as simple
as insertion of the key in a legacy BF as shown in Sec. III-
A. Similarly, on layer j, if a key to hash is assigned to Bj

i ,
the key is given to Bj+1

�i/2� for insert operation, 1< j≤s. The
detailed procedure is shown in Procedure insert which does
k j times memory write on layer j. Therefore, the memory write
complexity of one key insertion is

∑s
t=1 kt=w=kP which is the

same as a PPC, where kP is based on an optimal k. Also, note
that the first vertically lined for can be in pipeline because BF
memories on a layer are independent ones from other layers.
Thus, in every cycle one key insertion is performed on the
condition that B1

i on layer 1, 1≤i≤n, supports multiports.

D. Query operation in an MPC

Unlike insert operation where only involved BFs need
to be accessed, query operation needs to access all BFs to
find which BFs return ’yes’. Because except one BF the rest
BFs give f -positives leading to packet misclassification, the
irrelevant BFs in an MPC are geared not to be probed, so that
the BF access complexity in processing a lookup with n BFs

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 3

Authorized licensed use limited to: National Cheng Kung University. Downloaded on September 18, 2009 at 08:23 from IEEE Xplore. Restrictions apply.

is far less than n. To provide such a complexity, we split the
memory of a PPC into small-sized BFs and large-sized BFs
in multi-tiers, and they are connected in binary trees. Then,
accesses to large-sized BFs are made only if their parents of
small-sized BFs return ’yes’ (or value 1 in D) as in Fig. 1.
Also, BFs in multi-tiers can be in pipeline so that there is no
performance degradation. Before the detail procedure, let us
introduce true- and false-path definitions in an MPC.

In query operation among a forest shown in Fig. 1, a true
path, t-path, occurs. It is composed of shadowed BFs from
a root of a tree to return ’yes’. These were involved in the
previous insert operation for a key. For example, if a key is
assigned to set B2 in a PPC, the BFs on a t-path for a 2TPC
are B2

1, B
1
2 as shown in Fig. 1. From the above definition, in

query operation all BFs on the t-path should return ’yes’ for
a given key as a legacy BF returns ’yes’ because each BF has
the key as a member.

Unlike a t-path, a false path is made from a group of BFs
giving f -positives so that packet misclassification occurs. The
f -positives by the BFs, neither stemming from a branch of
a t-path nor being a complete path in a tree among a forest,
can not contribute a false path, or f -path, by the definition.
Also, the number of f -paths means the number of packet
misclassifications. An important fact is that the probability
of misclassification for an f -path contributing one packet
misclassification is cumulatively calculated in product of each
f -positive on the f -path.

1) False classification in a successful lookup: We divide
a lookup in two ways: 1) a successful lookup and 2) an
unsuccessful lookup. If a queried key in a lookup exists a
BF member, we call the lookup an SL. Now, we show the
misclassification probability in an SL.

By a recursive definition, the probability Pa(i) that root a
in a binary tree has i packet misclassifications is the product
of the following three: the probability of an f -positive in root
a of the binary tree, the probability that a left subtree has
i- j packet misclassifications, and the probability that a right
subtree has j packet misclassifications as the following:

Pa(i) =
∑i

j=0 fa × Pl(i − j) × Pr(j), (4)

where fa is the probability of an f -positive from BF a, and as
a base case, PB1

1
(1)= fB1

1
. Finally, the dominant probability, Ps(1)

that a single packet misclassification occurs across a forest is
the following:

Ps(1) =
∑r−1

j=1 PB j
t
(1) +

∑n/2r-1

i=2 PBr
i
(1), (5)

where r is the number of tiers, the first term is the summation
of Eq. (5)’s probabilities about BFs attached on a t-path and
the second term is the summation of probabilities about the
remaining trees among the forest.

2) False classification in an unsuccessful lookup: Since all
packets are not under specific flows based on a flow table, a
UL is important as much as an SL. Unlike an SL, in a UL
there is no t-path. This means that what a BF returns, if any,
is an f -positive. The dominant probability, Pu(1) that a single
packet misclassification happens in a UL is

Pu(1) =
∑n/2r-1

i=1 PBr
i
(1). (6)

Procedure query
Input: Forest F of binary trees for an MPC and key e
Output: Set S for a true path and a group of false paths
for tree T ∈ in forest F do1

S = S ∪ query BT(T, e) ;2
end3
return S ;4

Procedure query shows the details of query operation on an
MPC. The code in the vertical line of Procedure query can
be implemented in parallel. Also, it calls subroutine query BT
which is working recursively and in pipeline on each layer in
a binary tree to check a BF for the key e as a legacy BF does.
Also, pipelining on layers in a binary tree makes it sure that
the query complexity is Θ(1) as a PPC’ complexity is.

Based on Eqs. (5) and (6), the expected packet misclassifi-
cation considering SL and UL rates is

ps
∑n−1

i=1 i · Ps(i) + (1 − ps)
∑n

i=1 i · Pu(i) = ps · Es + (1 − ps)Eu, (7)

where ps is an SL rate, and Es and Eu are the average packet
misclassifications for an SL and a UL, respectively.

There is a minuscule classification performance degradation
in using an MPC. Fig. 3 shows the average packet misclassi-
fication of a PPC and a 2TPC based on Eq. (7) with a rate
of successful lookup ps. There are three important facts to

 2e-08

 4e-08

 6e-08

 8e-08

 1e-07

 1.2e-07

 1.4e-07

 0.001 0.01 0.1 1

A
vg

. p
ac

ke
t m

is
cl

as
si

fi
ca

tio
n

Successful lookup probability(Ps) (log scale)

2TPC-128
PPC-128

2TPC-64

PPC-64

2TPC-32

PPC-32

Fig. 3. The average packet misclassification for a PPC-n and a 3TPC-n in
a different SL rate. f=2−w=2−30, w1=28, w2=w3=1. n ∈ {32, 64, 128}.

consider: 1) Given desired f -positive, f , as long as the n
is larger, the value of the average packet misclassification
is getting larger due to bigger binomial coefficient value
B(f , n). 2) Given the same memory size, the probabilities
of PPC-n and 2TPC-n for a UL are the same while in a
dominant rate of an SL, there is a minuscule difference, 2E-
9, between them. 3) The difference gets smaller as long as
the n is larger. In conclusion, as long as the number of
BFs, n, and the rate ps are larger, the difference of packet
misclassifications between a PPC and a 2TPC is negligible.
The one-packet misclassifications of Eqs. (5) and (6) show
the same phenomenon shown in Fig. 3.
Delete operation is not as easy as insert because a basic

BF in [3, 5–7] does not support deletion of a key which was
encoded in the BF. If a low power counting BF (L-CBF) [18]
is adopted, the operation of delete is as easy as a legacy BF.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 4

Authorized licensed use limited to: National Cheng Kung University. Downloaded on September 18, 2009 at 08:23 from IEEE Xplore. Restrictions apply.

3 4 5 6 7 8

1.4

1.5

1.6

1.7

b, (PUR)
3 4 5 6 7 8

1.3

1.4

1.5

1.6

b, (SDA)

3 4 5 6 7 8
1.4

1.5

1.6

1.7

1.8

1.9

b, (FRG)
3 4 5 6 7 8

1.6

1.8

2

b, (PSC)

n=16

n=32

n=64

n=16

n=32

n=64
n=16

n=32

n=64

n=16

n=32

n=64

Fig. 4. Throughput ratios of a 2TPC against a PPC in four traces with different number of buffer size b and n BFs. w1=28, w2=2.

IV. Simulation Environment and Result

We measured PPC and MPC throughputs with IP trace
from NLANR PMA [10]. We assume that a PPC needs one
cycle to process a packet lookup to n parallel BFs while an
MPC can process a group of packet lookups in one cycle.
The throughput is defined as the number of packets over the
number of simulation cycles to process the whole IP traces.
The IP traces we used are PUR, SDA, FRG, and PSC which
have 19.4K, 29.5K, 39.7K, and 37.9K flows as rules, respectively.
In simulation, we tested 193.3K, 292.2K, 337K, and 314.3K
packets in flow identification with different number of router
ports, each having the same number of flows equally.

Fig. 4 shows the average throughput ratios of four traces by
10 runs in a 2PC architecture where each small-sized BF on
layer 2 has a b-sized buffer to process b packets in the buffer
in one cycle. Once they process packets in the their buffers, the
results are forwarded to large-sized BFs on layer 1. A BF on
layer 1 works on a partially processed packet only if a parent
BF of the BF returns ’yes’ to the packet. Thus, if a BF on
layer 2 returns ’no’ about a packet, the children BFs of large
size can process other following packets, leading to a higher
throughput. In each subfigure, in all different numbers of BFs
the larger is the buffer size, the higher throughput ratio is,
proving that our MPC gives a higher throughput performance
than a PPC. At most 2.0 times throughput was observed in
PSC. Even if we simulated a case of, at most, 64 BFs, if a
larger number of BFs and buffer size b is used, our MPC is
believed to show higher throughput than those in Fig. 4.

V. Conclusion and FutureWork

For high-throughput packet processing, we have suggested
an MPC which reconfigure BFs into small-sized BFs and
large-sized BFs in a multi-tiered way without memory over-
head, compared to a PPC. By Lemma 1 in Sec. III-A, we
showed how to build an MPC with the same memory amount
as a PPC in Sec. III-B. It is observed that the number of
fabricated read ports in BFs’ memory as well as the area cost
for an MPC are reduced with the same memory. Also, we
showed the insert and query as simple as those of PBFs.
Finally, with the same memory amount as a PPC, our MPC
provides the same probability of an f -positive for a UL and
a minuscule increase in the probability for an SL as shown
in Fig. 3. In simulation with NLANR’s IP traces for flow

identification, an MPC shows a higher throughput efficiency
for all traces than a PPC, at most 2.0 times. In future work,
we will consider power efficiency in an MPC.

References

[1] A. Broder and M. Mitzenmacher, “Network Applications of Bloom
Filters: A Survey,” Internet Mathematics, vol. 1, no. 4, 2002.

[2] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost, “Informed
Content Delivery Across Adaptive Overlay Networks,” in SIGCOMM
’02.

[3] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest Prefix
Matching using Bloom Filters,” in SIGCOMM ’03.

[4] S. Dharmapurikar and J. Lockwood, “Fast and Scalable Pattern Matching
for Network Intrusion Detection Systems,” IEEE Journal on Selected
Areas in Communications, vol. 24, no. 10, pp. 1781–1792, 2006.

[5] W.-c. F. F. Chang and K. Li, “Approximate Caches for Packet Classifi-
cation,” in INFOCOM 2004, pp. 2196–2207.

[6] H. C. Deke Guo, Jie Wu and X. Luo, “Theory and Network Applications
of Dynamic Bloom Filters,” in INFOCOM 2006.

[7] T. S. Sarang Dharmapurikar, Praveen Krishnamurthy and J. Lockwood,
“Deep Packet Inspection using Parallel Bloom Filters,” in MICRO 37:
Proceedings of the 37th annual ACM/IEEE international symposium on
Microarchitecture, 2004, pp. 52–61.

[8] H. Song, J. Turner, and S. Dharmapurikar, “Packet Classification Using
Coarse-grained Tuple Spaces,” in ANCS ’06, pp. 41–50.

[9] J. X. A. Kumar and E. Zegura, “Efficient and Scalable Query Routing
for Unstructured Peer-to-Peer Networks,” in INFOCOM ’05, pp. 13–17.

[10] Paasive Measurement and Analysis Project, National laboratory
for Applied network Research (NLANR). [Online]. Available:
http://pma.nlanr.net/Traces/Traces

[11] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and
Scalable Layer Four Switching,” in SIGCOMM ’98.

[12] K. Lakshminarayanan, A. Ranga, and S. Venkatachary, “Algorithms for
Advanced Packet Classification with Ternary CAM,” in SIGCOMM ’05.

[13] M. S. Jun Xu and J. Degroat, “A Novel Cache Architecture to Sup-
port Layer-Four Packet Classification at Memory Access Speeds,” in
INFOCOM 2000, pp. 1445–1454.

[14] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary Cache: a
Scalable Wide-Area Web Cache Sharing Protocol,” IEEE/ACM Trans.
Netw., vol. 8, no. 3, pp. 281–293, 2000.

[15] A. C. Snoeren, “Hash-based IP Traceback,” in SIGCOMM ’01, pp. 3–14.
[16] S. Wilton and N. Jouppi, “An Enhanced Access and Cycle Time Model

for on-chip Caches,” DEC Western Research Lab, Tech. Rep., 1994.
[17] D. A. Patterson and J. L. Hennessy, Computer Architecture: A Quantita-

tive Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1990.

[18] A. M. Elham Safi and A. Veneris, “L-CBF: a Low-Power, Fast Counting
Bloom Filter Architecture,” in ISLPED ’06, pp. 250–255.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 5

Authorized licensed use limited to: National Cheng Kung University. Downloaded on September 18, 2009 at 08:23 from IEEE Xplore. Restrictions apply.

